Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions (2024)

1. Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: an updated review. Cont Lens Anterior Eye. 2022;45(3):101559. doi: 10.1016/j.clae.2021.101559 [PubMed] [CrossRef] [Google Scholar]

2. Naderan M, Shoar S, Rezagholizadeh F, Zolfa*ghari M, Naderan M. Characteristics and associations of keratoconus patients. Cont Lens Anterior Eye. 2015;38(3):199–205. doi: 10.1016/j.clae.2015.01.008 [PubMed] [CrossRef] [Google Scholar]

3. Hashemi H, Heydarian S, Hooshmand E, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea. 2020;39(2):263–270. doi: 10.1097/ICO.0000000000002150 [PubMed] [CrossRef] [Google Scholar]

4. Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder?Eye. 2015;29(7):843–859. doi: 10.1038/eye.2015.63 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Armstrong BK, Smith SD, Romac Coc I, Agarwal P, Mustapha N, Navon S. Screening for keratoconus in a high-risk adolescent population. Ophthalmic Epidemiol. 2021;28(3):191–197. doi: 10.1080/09286586.2020.1804593 [PubMed] [CrossRef] [Google Scholar]

6. Shi Y. Strategies for improving the early diagnosis of keratoconus. Clin Optom. 2016;8:13–21. doi: 10.2147/OPTO.S63486 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Kanclerz P, Khoramnia R, Wang X. Current developments in corneal topography and tomography. Diagnostics. 2021;11(8):1466. doi: 10.3390/diagnostics11081466 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Ortiz-Toquero S, Martin R. Keratoconus screening in primary eye care – a general overview. Eur Ophthalmic Rev. 2016;10(2):80. doi: 10.17925/EOR.2016.10.02.80 [CrossRef] [Google Scholar]

9. Kong AW, Ahmad TR, Turner ML, et al. Trends in Corneal Topography and Tomography Imaging for Keratoconus Management. Clin Ophthalmol. 2022;16:1357–1363. doi: 10.2147/OPTH.S361352 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Penna RR, de Sanctis U, Catalano M, Brusasco L, Grignolo FM. Placido disk-based topography versus high-resolution rotating Scheimpflug camera for corneal power measurements in keratoconic and post-LASIK eyes: reliability and agreement. Int J Ophthalmol. 2017;10(3):453–460. doi: 10.18240/ijo.2017.03.20 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Tunç U, Akbaş YB, Yıldırım Y, Kepez Yıldız B, Kırgız A, Demirok A. Repeatability and reliability of measurements obtained by the combined Scheimpflug and Placido-disk tomography in different stages of keratoconus. Eye. 2021;35(8):2213–2220. doi: 10.1038/s41433-020-01238-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Yang Y, Pavlatos E, Chamberlain W, Huang D, Li Y. Keratoconus detection using OCT corneal and epithelial thickness map parameters and patterns. J Cataract Refract Surg. 2021;47(6):759–766. doi: 10.1097/j.jcrs.0000000000000498 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Kim KY, Lee S, Jeon YJ, Min JS. Anterior segment characteristics in normal and keratoconus eyes evaluated with a new type of swept-source optical coherence tomography. PLoS One. 2022;17(9):e0274071. doi: 10.1371/journal.pone.0274071 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Golan O, Piccinini AL, Hwang ES, et al. Distinguishing highly asymmetric keratoconus eyes using dual Scheimpflug/Placido analysis. Am J Ophthalmol. 2019;201:46–53. doi: 10.1016/j.ajo.2019.01.023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clin Experiment Ophthalmol. 2018;46(2):133–146. doi: 10.1111/ceo.13136 [PubMed] [CrossRef] [Google Scholar]

16. Belin MW, Kundu G, Shetty N, Gupta K, Mullick R, Thakur P. ABCD: a new classification for keratoconus. Indian J Ophthalmol. 2020;68(12):2831–2834. doi: 10.4103/ijo.IJO_2078_20 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg. 2016;42(2):284–295. doi: 10.1016/j.jcrs.2015.09.021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Serrao S, Lombardo G, Calì C, Lombardo M. Role of corneal epithelial thickness mapping in the evaluation of keratoconus. Cont Lens Anterior Eye. 2019;42(6):662–665. doi: 10.1016/j.clae.2019.04.019 [PubMed] [CrossRef] [Google Scholar]

19. Piñero DP, Alcón N. Corneal biomechanics: a review. Clin Exp Optom. 2015;98(2):107–116. doi: 10.1111/cxo.12230 [PubMed] [CrossRef] [Google Scholar]

20. Tian L, Qin X, Zhang H, et al. A potential screening index of corneal biomechanics in healthy subjects, forme fruste keratoconus patients and clinical keratoconus patients. Front Bioeng Biotechnol. 2021;9:766605. doi: 10.3389/fbioe.2021.766605 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Sedaghat M-R, Momeni-Moghaddam H, Roberts CJ, Maddah N, Ambrósio R, Hosseini SR. Corneal biomechanical parameters in keratoconus eyes with abnormal elevation on the back corneal surface only versus both back and front surfaces. Sci Rep. 2021;11(1):11971. doi: 10.1038/s41598-021-91263-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Sedaghat M-R, Momeni-Moghaddam H, Ambrósio R, et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea. 2018;37(8):1025–1034. doi: 10.1097/ICO.0000000000001639 [PubMed] [CrossRef] [Google Scholar]

23. Kramer EAvaGen genetic testing: the latest tool in early detection for keratoconus; 2021. Available from: https://www.westoncontactlens.com/avagen-genetic-testing-the-latest-tool-in-early-detection-for-keratoconus/. Accessed August4, 2023.

24. Chen S, X-Y L, Jin -J-J, et al. Genetic screening revealed latent keratoconus in asymptomatic individuals. Front Cell Dev Biol. 2021;9:650344. doi: 10.3389/fcell.2021.650344 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Li X, Bykhovskaya Y, Canedo ALC, et al. Genetic association of COL5A1 variants in keratoconus patients suggests a complex connection between corneal thinning and keratoconus. Invest Ophthalmol Vis Sci. 2013;54(4):2696–2704. doi: 10.1167/iovs.13-11601 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Ahmad TR, Pasricha ND, Rose-Nussbaumer J, Oatts J, Schallhorn J, Indaram M. Corneal collagen cross-linking under general anesthesia for pediatric patients with keratoconus and developmental delay. Cornea. 2020;39(5):546–551. doi: 10.1097/ICO.0000000000002197 [PubMed] [CrossRef] [Google Scholar]

27. ALGarzaie MA, Alsaqr AM. A comparative study of corneal topography in children with autism spectrum disorder: a cross-sectional study. Vision. 2021;5(1). doi: 10.3390/vision5010004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Ahmad TR, Turner ML, Hoppe C, et al. Parental keratoconus literacy: a socioeconomic perspective. Clin Ophthalmol. 2022;16:2505–2511. doi: 10.2147/OPTH.S375405 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Ricouard F, Puyraveau M, Gain P, Martinache I, Delbosc B, Gauthier AS. Regional trends in corneal transplantation from 2004 to 2015 in France: a 12-year review on indications, technique and waiting period. Cell Tissue Bank. 2020;21(1):65–76. doi: 10.1007/s10561-019-09798-z [PubMed] [CrossRef] [Google Scholar]

30. Aytekin E, Pehlivan SB. Corneal cross-linking approaches on keratoconus treatment. J Drug Deliv Sci Technol. 2021;63:102524. doi: 10.1016/j.jddst.2021.102524 [CrossRef] [Google Scholar]

31. Wollensak G, Spörl E, Seiler T. Treatment of keratoconus by collagen cross linking. Ophthalmologe. 2003;100(1):44–49. doi: 10.1007/s00347-002-0700-3 [PubMed] [CrossRef] [Google Scholar]

32. D’Oria F, Palazón A, Alio JL. Corneal collagen cross-linking epithelium-on vs. epithelium-off: a systematic review and meta-analysis. Eye Vis. 2021;8(1):34. doi: 10.1186/s40662-021-00256-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi: 10.1016/s0002-9394(02)02220-1 [PubMed] [CrossRef] [Google Scholar]

34. Sorkin N, Varssano D. Corneal collagen crosslinking: a systematic review. Ophthalmologica. 2014;232(1):10–27. doi: 10.1159/000357979 [PubMed] [CrossRef] [Google Scholar]

35. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52(12):9048–9052. doi: 10.1167/iovs.11-7818 [PubMed] [CrossRef] [Google Scholar]

36. Boschetti F, Conti D, Soriano EM, Mazzotta C, Pandolfi A. Experimental in-vitro investigation on Epi-Off-Crosslinking on porcine corneas. PLoS One. 2021;16(4):e0249949. doi: 10.1371/journal.pone.0249949 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101. doi: 10.2147/OPTH.S27170 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Cingü AK, Sogutlu-Sari E, Cınar Y, et al. Transient corneal endothelial changes following accelerated collagen cross-linking for the treatment of progressive keratoconus. Cutan Ocul Toxicol. 2014;33(2):127–131. doi: 10.3109/15569527.2013.812107 [PubMed] [CrossRef] [Google Scholar]

39. Xing H, Oyang H. Evaluation of corneal tissue changes after collagen cross-linking with ultraviolet and riboflavin A. Cell Mol Biol. 2022;68(5):72–76. doi: 10.14715/cmb/2022.68.5.9 [PubMed] [CrossRef] [Google Scholar]

40. van der Valk Bouman ES, Pump H, Borsook D, et al. Pain mechanisms and management in corneal cross-linking: a review. BMJ Open Ophthalmol. 2021;6(1):e000878. doi: 10.1136/bmjophth-2021-000878 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Napolitano P, Tranfa F, D’Andrea L, et al. Topographic outcomes in keratoconus surgery: Epi-on versus Epi-off iontophoresis corneal collagen cross-linking. J Clin Med. 2022;11(7):1785. doi: 10.3390/jcm11071785 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Henriquez MA, Rodríguez AM, Izquierdo L. Accelerated Epi-on versus standard Epi-off corneal collagen cross-linking for progressive keratoconus in pediatric patients. Cornea. 2017;36(12):1503–1508. doi: 10.1097/ICO.0000000000001366 [PubMed] [CrossRef] [Google Scholar]

43. Nicula CA, Nicula D, Rednik AM, Bulboacă AE. Comparative results of “Epi-Off” conventional versus “Epi-Off” accelerated cross-linking procedure at 5-year follow-up. J Ophthalmol. 2020;2020:4745101. doi: 10.1155/2020/4745101 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Iqbal M, Gad A, Kotb A, Abdelhalim M. Analysis of the outcomes of three different cross-linking protocols for treatment of paediatric keratoconus: a multicentre randomized controlled trial. Acta Ophthalmol. 2023;2023:1. doi: 10.1111/aos.15686 [PubMed] [CrossRef] [Google Scholar]

45. Iqbal M, Elmassry A, Saad H, et al. Standard cross-linking protocol versus accelerated and transepithelial cross-linking protocols for treatment of paediatric keratoconus: a 2-year comparative study. Acta Ophthalmol. 2020;98(3):e352–e362. doi: 10.1111/aos.14275 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Zhang J, Zhang L, Hong J, Wu D, Xu J. Association of common variants in LOX with keratoconus: a meta-analysis. PLoS One. 2015;10(12):e0145815. doi: 10.1371/journal.pone.0145815 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Balasubramanian SA, Mohan S, Pye DC, Willcox MDP. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol. 2012;90(4):e303–9. doi: 10.1111/j.1755-3768.2011.02369.x [PubMed] [CrossRef] [Google Scholar]

48. Dudakova L, Sasaki T, Liskova P, Palos M, Jirsova K. The presence of lysyl oxidase-like enzymes in human control and keratoconic corneas. Histol Histopathol. 2016;31(1):63–71. doi: 10.14670/HH-11-649 [PubMed] [CrossRef] [Google Scholar]

49. Dudakova L, Jirsova K. The impairment of lysyl oxidase in keratoconus and in keratoconus-associated disorders. J Neural Transm. 2013;120(6):977–982. doi: 10.1007/s00702-013-0993-1 [PubMed] [CrossRef] [Google Scholar]

50. Dudakova L, Liskova P, Trojek T, Palos M, Kalasova S, Jirsova K. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas. Exp Eye Res. 2012;104:74–81. doi: 10.1016/j.exer.2012.09.005 [PubMed] [CrossRef] [Google Scholar]

51. Pahuja N, Kumar NR, Shroff R, et al. Differential molecular expression of extracellular matrix and inflammatory genes at the corneal cone apex drives focal weakening in Keratoconus. Invest Ophthalmol Vis Sci. 2016;57(13):5372–5382. doi: 10.1167/iovs.16-19677 [PubMed] [CrossRef] [Google Scholar]

52. Shetty R, Sathyanarayanamoorthy A, Ramachandra RA, et al. Attenuation of lysyl oxidase and collagen gene expression in Keratoconus patient corneal epithelium corresponds to disease severity. Mol Vis. 2015;21:12–25. [PMC free article] [PubMed] [Google Scholar]

53. Muddana SK, Hauritz H, Burr M, Ambati B, Molokhia S. The effect of IVMED-80 eye drops on lysinonorleucine (LNL) amounts in vivo for treatment of keratoconus. ARVO Annu Meet Abstr. 2019;60(9):1. [Google Scholar]

54. Muddana SK, Ambati BK, Uehara H, Burr M, Molokhia S. Effect of IVMED-80 on human cadaver cornea crosslinking. ARVO Annu Meet Abstr. 2018;59(9):1. [Google Scholar]

55. Molokhia S, Muddana SK, Hauritz H, et al. IVMED 80 eye drops for treatment of keratoconus in patients—phase 1/2a. Invest Ophthalmol Vis Sci. 2020;2020:2587. [Google Scholar]

56. Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology. 2022;11(6):804. doi: 10.3390/biology11060804 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 2019;1871(2):455–468. doi: 10.1016/j.bbcan.2019.04.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS, Yam GH-F. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci. 2019;20(12):2853. doi: 10.3390/ijms20122853 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Liu X-N, S-L M, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol. 2021;14(3):448–455. doi: 10.18240/ijo.2021.03.19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Samaeekia R, Rabiee B, Putra I, et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2018;59(12):5194–5200. doi: 10.1167/iovs.18-24803 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Han K-Y, Tran JA, Chang J-H, Azar DT, Zieske JD. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. Sci Rep. 2017;7:40548. doi: 10.1038/srep40548 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hefley BS, Deighan C, Vasini B, et al. Revealing the presence of tear extracellular vesicles in Keratoconus. Exp Eye Res. 2022;224:109242. doi: 10.1016/j.exer.2022.109242 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021;12(1):4389. doi: 10.1038/s41467-021-24384-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Huang Y, Zucker B, Zhang S, et al. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat Cell Biol. 2019;21(8):991–1002. doi: 10.1038/s41556-019-0367-5 [PubMed] [CrossRef] [Google Scholar]

65. Michaud L, Lipson M, Kramer E, Walker M. The official guide to scleral lens terminology. Cont Lens Anterior Eye. 2020;43(6):529–534. doi: 10.1016/j.clae.2019.09.006 [PubMed] [CrossRef] [Google Scholar]

66. Bergmanson JPG, Walker MK, Johnson LA. Assessing scleral contact lens satisfaction in a Keratoconus population. Optom Vis Sci. 2016;93(8):855–860. doi: 10.1097/OPX.0000000000000882 [PubMed] [CrossRef] [Google Scholar]

67. Kumar P, Bandela PK, Bharadwaj SR. Do visual performance and optical quality vary across different contact lens correction modalities in keratoconus?Cont Lens Anterior Eye. 2020;43(6):568–576. doi: 10.1016/j.clae.2020.03.009 [PubMed] [CrossRef] [Google Scholar]

68. Visser E-S, Visser R, van Lier HJJ, Otten HM. Modern scleral lenses part I: clinical features. Eye Contact Lens. 2007;33(1):13–20. doi: 10.1097/01.icl.0000233217.68379.d5 [PubMed] [CrossRef] [Google Scholar]

69. Kreps EO, Pesudovs K, Claerhout I, Koppen C. Mini-scleral lenses improve vision-related quality of life in Keratoconus. Cornea. 2021;40(7):859–864. doi: 10.1097/ICO.0000000000002518 [PubMed] [CrossRef] [Google Scholar]

70. Walker MK, Bergmanson JP, Miller WL, Marsack JD, Johnson LA. Complications and fitting challenges associated with scleral contact lenses: a review. Cont Lens Anterior Eye. 2016;39(2):88–96. doi: 10.1016/j.clae.2015.08.003 [PubMed] [CrossRef] [Google Scholar]

71. Macedo-de-Araújo RJ, van der Worp E, González-Méijome JM. A one-year prospective study on scleral lens wear success. Cont Lens Anterior Eye. 2020;43(6):553–561. doi: 10.1016/j.clae.2019.10.140 [PubMed] [CrossRef] [Google Scholar]

72. Schornack MM, Fogt J, Harthan J, et al. Factors associated with patient-reported midday fogging in established scleral lens wearers. Cont Lens Anterior Eye. 2020;43(6):602–608. doi: 10.1016/j.clae.2020.03.005 [PubMed] [CrossRef] [Google Scholar]

73. Vega-Estrada A, Alio JL. The use of intracorneal ring segments in keratoconus. Eye Vis. 2016;3:8. doi: 10.1186/s40662-016-0040-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Colin J, Cochener B, Savary G, Malet F. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26(8):1117–1122. doi: 10.1016/s0886-3350(00)00451-x [PubMed] [CrossRef] [Google Scholar]

75. Coskunseven E, Kymionis GD, Tsiklis NS, et al. One-year results of intrastromal corneal ring segment implantation (KeraRing) using femtosecond laser in patients with keratoconus. Am J Ophthalmol. 2008;145(5):775–779. doi: 10.1016/j.ajo.2007.12.022 [PubMed] [CrossRef] [Google Scholar]

76. Zare MA, Hashemi H, Salari MR. Intracorneal ring segment implantation for the management of keratoconus: safety and efficacy. J Cataract Refract Surg. 2007;33(11):1886–1891. doi: 10.1016/j.jcrs.2007.06.055 [PubMed] [CrossRef] [Google Scholar]

77. Colin J, Malet FJ. Intacs for the correction of keratoconus: two-year follow-up. J Cataract Refract Surg. 2007;33(1):69–74. doi: 10.1016/j.jcrs.2006.08.057 [PubMed] [CrossRef] [Google Scholar]

78. Park SE, Tseng M, Lee JK. Effectiveness of intracorneal ring segments for keratoconus. Curr Opin Ophthalmol. 2019;30(4):220–228. doi: 10.1097/ICU.0000000000000582 [PubMed] [CrossRef] [Google Scholar]

79. Alió JL, Shabayek MH, Artola A. Intracorneal ring segments for keratoconus correction: long-term follow-up. J Cataract Refract Surg. 2006;32(6):978–985. doi: 10.1016/j.jcrs.2006.02.044 [PubMed] [CrossRef] [Google Scholar]

80. Alfonso JF, Lisa C, Merayo-Lloves J, Cueto LF-V, Montés-Micó R. Intrastromal corneal ring segment implantation in paracentral keratoconus with coincident topographic and coma axis. J Cataract Refract Surg. 2012;38(9):1576–1582. doi: 10.1016/j.jcrs.2012.05.031 [PubMed] [CrossRef] [Google Scholar]

81. Fernández-Vega-Cueto L, Lisa C, Alfonso-Bartolozzi B, Madrid-Costa D, Alfonso JF. Intrastromal corneal ring segment implantation in paracentral keratoconus with perpendicular topographic astigmatism and comatic axis. Eur J Ophthalmol. 2021;31(4):1540–1545. doi: 10.1177/1120672120952346 [PubMed] [CrossRef] [Google Scholar]

82. Fernández-Vega Cueto L, Lisa C, Madrid-Costa D, Merayo-Lloves J, Alfonso JF. Long-term follow-up of intrastromal corneal ring segments in paracentral Keratoconus with coincident corneal keratometric, comatic, and refractive axes: stability of the procedure. J Ophthalmol. 2017;2017(3):4058026. doi: 10.1155/2017/4058026 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Piñero DP, Alio JL. Intracorneal ring segments in ectatic corneal disease - a review. Clin Experiment Ophthalmol. 2010;38(2):154–167. doi: 10.1111/j.1442-9071.2010.02197.x [PubMed] [CrossRef] [Google Scholar]

84. Jacob S, Patel SR, Agarwal A, Ramalingam A, Saijimol AI, Raj JM. Corneal Allogenic Intrastromal Ring Segments (CAIRS) combined with corneal cross-linking for Keratoconus. J Refract Surg. 2018;34(5):296–303. doi: 10.3928/1081597X-20180223-01 [PubMed] [CrossRef] [Google Scholar]

85. Jacob S, Agarwal ACAIRS a reversible, stand-alone option for keratoconus treatment. 2020. Available from: https://www.healio.com/news/ophthalmology/20200916/cairs-a-reversible-standalone-option-for-keratoconus-treatment. Accessed September8, 2023.

86. Parker JS, Dockery PW, Parker JS. Trypan blue-assisted corneal allogenic intrastromal ring segment implantation. J Cataract Refract Surg. 2021;47(1):127. doi: 10.1097/j.jcrs.0000000000000316 [PubMed] [CrossRef] [Google Scholar]

87. Alfonso JF, Fernández-Vega L, Lisa C, Fernandes P, González-Méijome JM, Montés-Micó R. Collagen copolymer toric posterior chamber phakic intraocular lens in eyes with keratoconus. J Cataract Refract Surg. 2010;36(6):906–916. doi: 10.1016/j.jcrs.2009.11.032 [PubMed] [CrossRef] [Google Scholar]

88. Melles GR, Lander F, Rietveld FJ, Remeijer L, Beekhuis WH, Binder PS. A new surgical technique for deep stromal, anterior lamellar keratoplasty. Br J Ophthalmol. 1999;83(3):327–333. doi: 10.1136/bjo.83.3.327 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Coombes AG, Kirwan JF, Rostron CK. Deep lamellar keratoplasty with lyophilised tissue in the management of keratoconus. Br J Ophthalmol. 2001;85(7):788–791. doi: 10.1136/bjo.85.7.788 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Reddy JC, Modiwala Z, Mathew M. Lamellar Keratoplasty in Keratoconus. In: Keratoconus. Springer Nature Singapore; 2022:205–220. [Google Scholar]

91. Keane M, Coster D, Ziaei M, Williams K. Deep anterior lamellar keratoplasty versus penetrating keratoplasty for treating keratoconus. Cochrane Database Syst Rev. 2014;(7):CD009700. doi: 10.1002/14651858.CD009700.pub2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Deep anterior lamellar keratoplasty versus penetrating keratoplasty: a meta-analysis of randomized controlled trials. Cornea. 2016;35(2):169–174. doi: 10.1097/ICO.0000000000000691 [PubMed] [CrossRef] [Google Scholar]

93. Ang M, Mehta JS. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty. Ophthalmology. 2011;118(11):2306–2307. doi: 10.1016/j.ophtha.2011.07.025 [PubMed] [CrossRef] [Google Scholar]

94. Watson SL, Ramsay A, Dart JKG, Bunce C, Craig E. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in patients with keratoconus. Ophthalmology. 2004;111(9):1676–1682. doi: 10.1016/j.ophtha.2004.02.010 [PubMed] [CrossRef] [Google Scholar]

95. Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Shtein RM. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the American Academy of Ophthalmology. Ophthalmology. 2011;118(1):209–218. doi: 10.1016/j.ophtha.2010.11.002 [PubMed] [CrossRef] [Google Scholar]

96. Yildiz E, Toklu M, Turan Vural E. Vision-related quality of life before and after deep anterior lamellar keratoplasty. Eye Contact Lens. 2018;44(3):144–148. doi: 10.1097/ICL.0000000000000359 [PubMed] [CrossRef] [Google Scholar]

97. Anwar M, Teichmann KD. Deep lamellar keratoplasty: surgical techniques for anterior lamellar keratoplasty with and without baring of Descemet’s membrane. Cornea. 2002;21(4):374–383. doi: 10.1097/00003226-200205000-00009 [PubMed] [CrossRef] [Google Scholar]

98. Funnell CL, Ball J, Noble BA. Comparative cohort study of the outcomes of deep lamellar keratoplasty and penetrating keratoplasty for keratoconus. Eye. 2006;20(5):527–532. doi: 10.1038/sj.eye.6701903 [PubMed] [CrossRef] [Google Scholar]

99. Jones MNA, Armitage WJ, Ayliffe W, Larkin DF, Kaye SB, NHSBT Ocular Tissue Advisory Group and Contributing Ophthalmologists (OTAG Audit Study 5). Penetrating and deep anterior lamellar keratoplasty for keratoconus: a comparison of graft outcomes in the United Kingdom. Invest Ophthalmol Vis Sci. 2009;50(12):5625–5629. doi: 10.1167/iovs.09-3994 [PubMed] [CrossRef] [Google Scholar]

100. Nanavaty MA, Vijjan KS, Yvon C. Deep anterior lamellar keratoplasty: a surgeon’s guide. J Curr Ophthalmol. 2018;30(4):297–310. doi: 10.1016/j.joco.2018.06.004 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Shetty R, Ahuja P, D’Souza S, et al. Simultaneous topography-guided PRK/CXL versus topography-assisted PTK/CXL: 1-year prospective outcomes in keratoconic eyes. J Refract Surg. 2021;37(8):562–569. doi: 10.3928/1081597X-20210609-01 [PubMed] [CrossRef] [Google Scholar]

Keratoconus Diagnosis and Treatment: Recent Advances and Future Directions (2024)

FAQs

What are the latest advances in keratoconus treatment? ›

A significant advancement in keratoconus treatment is customized cross-linking, which tailors the treatment based on the specific characteristics of the cornea. This approach has shown promising results in flattening the cornea and improving visual acuity without the need for bulky and expensive equipment.

Can keratoconus be cured in future? ›

Regular eye exams can help monitor the progression of the condition and guide appropriate treatment choices. While current treatments offer substantial relief and stability for individuals with keratoconus, a permanent cure remains a goal yet to be achieved.

How do you stop keratoconus from progressing? ›

Corneal Cross Linking

It can slow the progression of the disorder and improve vision. Corneal cross-linking is the process of creating links in the collagen fibers of your cornea using riboflavin and controlled ultraviolet light. This helps to flatten or stiffen your cornea, preventing it from bulging even more.

What is the FDA-approved treatment for keratoconus? ›

Corneal cross-linking (CXL) is a newer FDA-approved treatment for keratoconus. It is the only treatment to prevent keratoconus from getting worse. The treatment uses a combination of ultraviolet A light irradiation and the application of riboflavin (vitamin B2) eye drops to stabilize your cornea.

Has anyone reversed keratoconus? ›

While keratoconus can't be cured or reversed, depending on how advanced your keratoconus is, there are treatments and solutions we can offer that can prevent progression and provide clear vision.

Is there corrective surgery for keratoconus? ›

Depending on the location of the bulging cone and the severity of your condition, surgical options include: Intrastromal corneal ring segments (ICRS). For mild to moderate keratoconus, your eye doctor may recommend inserting small synthetic rings in your cornea.

What is the best treatment for keratoconus in the world? ›

Corneal Collagen Cross-linking (CXL)

The minimally-invasive, advanced therapy slows down or stops the progression of the corneal deformation of keratoconus, by making collagen bonds in the cornea stronger, allowing it to become stiffer and usually stop bulging out.

Is there a permanent fix for keratoconus? ›

However there is no known cure for keratoconus or means of reversing damage done to the cornea by keratoconus.

Will corneal transplant cure keratoconus? ›

A cornea transplant is most often used to restore vision to a person with a damaged cornea. A cornea transplant also can relieve pain or other symptoms associated with cornea diseases. A number of conditions can be treated with a cornea transplant, including: A cornea that bulges outward, called keratoconus.

What worsens keratoconus? ›

Keratoconus becomes worse when the collagen continues weakening. Some factors, such as constant eye rubbing, contribute to this.

Can you get 20/20 vision with keratoconus? ›

There are patients with frank KC who have reasonably good vision without correction or who can achieve 20/20 vision with a simple soft contact lens or spectacle correction. Most patients with keratoconus (KC) have myopic astigmatism.

At what age does keratoconus get worse? ›

Progression is generally more rapid, the earlier the age of onset. Keratoconus causes increasing blurriness and shortsightedness in vision, light sensitivity and halos and ghosting around light sources. Progression usually occurs to an age of around 40-45 years and then tends to stabilize.

Are there any new treatments for keratoconus? ›

Intracorneal ring segments as well as CAIRS, which is a relatively new procedure developed as an alternative to synthetic intracorneal ring segments, have also been found to be very effective in improving vision in patients with mild-to-moderate keratoconus and improving the corneal curvature in patients.

Is keratoconus a disability in USA? ›

In the United States, if a person's best-corrected visual acuity in both eyes is 20/200 or worse — whether caused by keratoconus or some other condition — that person is considered legally blind and may qualify for disability benefits.

What are the new eye drops for keratoconus? ›

In 2020, under the leadership of iVeena, a team of researchers evaluated the safety and preliminary efficacy of the eye drops in Phase I/IIa FDA trials. IVMED-80 was developed to increase lysyl oxidase, a cross-linking enzyme that, when decreased, is linked to keratoconus.

What are the new lenses for keratoconus? ›

Hybrid Contact Lenses

These lenses are a mix between an RGP lens and soft lenses. They have a hard center surrounded by a softer material, so you get both comfort and clear vision. ClearKone is an FDA-approved hybrid soft contact lens specifically designed to treat keratoconus and other corneal irregularities.

Top Articles
Latest Posts
Article information

Author: Lakeisha Bayer VM

Last Updated:

Views: 6090

Rating: 4.9 / 5 (69 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Lakeisha Bayer VM

Birthday: 1997-10-17

Address: Suite 835 34136 Adrian Mountains, Floydton, UT 81036

Phone: +3571527672278

Job: Manufacturing Agent

Hobby: Skimboarding, Photography, Roller skating, Knife making, Paintball, Embroidery, Gunsmithing

Introduction: My name is Lakeisha Bayer VM, I am a brainy, kind, enchanting, healthy, lovely, clean, witty person who loves writing and wants to share my knowledge and understanding with you.