Overview of the Lens (2024)

1. Brewster D. On the anatomical and optical structure of the crystalline lens of animals, particularly that of cod. Philos Trans R Soc Lond. 1833;123:323–332. [Google Scholar]

2. Morner CT. Untersuchungen der protein-substanzen in den lichtbrechenden Medien des Auges. Hoppe Seylers Z Physiol Chem. 1894;18:61–106. [Google Scholar]

3. Spemann H. Uber Korrelationen in der Entwicklung des Auges. Verh Anat Ges. 1901;15:61–79. [Google Scholar]

4. Renwick JH, Lawler SD. Probable linkage between a congenital cataract locus and the Duffy blood group locus. Ann Hum Genet. 1963;27:67–84. [PubMed] [Google Scholar]

5. Zelenka PS, Piatigorsky J. Isolation and in vitro translation of delta-crystallin mRNA from embryonic chick lens fibers. Proc Natl Acad Sci USA. 1974;71:1896–1900. [PMC free article] [PubMed] [Google Scholar]

6. Harding JJ, Rixon KC, Marriott FHC. Men have heavier lenses than women of the same age. Exp Eye Res. 1977;25:651. [PubMed] [Google Scholar]

7. Augusteyn RC. Growth of the human eye lens. Mol Vis. 2007;13:252–257. [PMC free article] [PubMed] [Google Scholar]

8. Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. [PubMed] [Google Scholar]

9. Kuszak JR. Embryology and anatomy of the lens. In: Tasman W, Jaeger EA, editors. Duane’s Clinical Ophthalmology. Philadelphia: J.B. Lippincott; 1990. pp. 1–9. [Google Scholar]

10. Danysh BP, Duncan MK. The lens capsule. Exp Eye Res. 2009;88(2):151–164. [PMC free article] [PubMed] [Google Scholar]

11. Koretz JF, Handelman GH. How the human eye focuses. Sci Am. 1988;256:92–99. [PubMed] [Google Scholar]

12. Fisher RF, Pettet BE. The postnatal growth of the capsule of the human crystalline lens. J Anat. 1972;112:207–214. [PMC free article] [PubMed] [Google Scholar]

13. Parmigiani C, McAvoy J. Localisation of laminin and fibronectin during rat lens morphogenesis. Differentiation. 1986;28:53–61. [PubMed] [Google Scholar]

14. Cammarata PR, Cantu-Crouch D, Oakford L, Morrill A. Macromolecular organization of the bovine lens capsule. Tissue Cell. 1986;18:83–97. [PubMed] [Google Scholar]

15. Mir S, Wheatley HM, Hussels IE, Whittum-Hudson JA, Traboulsi EI. A comparative histologic study of the fibrillin microfibrillar system in the lens capsule of normal subjects and subjects with Marfan syndrome. Invest Ophthalmol Vis Sci. 1998;39(1):84–93. [PubMed] [Google Scholar]

16. Mann I. The Development of the Human Eye. New York: Grune and Stratton; 1964. [Google Scholar]

17. Goodenough DA, Dick JSB, Lyons JE. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980;86:576–589. [PMC free article] [PubMed] [Google Scholar]

18. Gorthy WC, Snavely MR, Berrong ND. Some aspects of transport and digestion in the lens of the normal young adult rat. Exp Eye Res. 1971;12:112–119. [PubMed] [Google Scholar]

19. Rae JL, Stacey T. Lanthanum and procion yellow as extracellular markers in the crystalline lens of the rat. Exp Eye Res. 1979;28:1–21. [PubMed] [Google Scholar]

20. Ramaekers FCS, Bloemendal H. Cytoskeletal and contractile structures in lens cell differentiation. In: Bloemendal H, editor. Molecular and Cellular Biology of the Eye Lens. New York: John Wiley & Sons; 1981. pp. 85–136. [Google Scholar]

21. Benedetti L, Dunia I, Ramaekers FCS, Kibbelaar MA. Lenticular plasma membranes and cytoskeleton. In: Bloemendal H, editor. Molecular and Cellular Biology of the Eye Lens. New York: John Wiley & Sons; 1981. pp. 137–188. [Google Scholar]

22. Alcala H, Maisel H. Biochemistry of lens plasma membranes and cytoskeleton. In: Maisel H, editor. The Ocular Lens. New York: Marcel Dekker Inc.; 1985. pp. 169–222. [Google Scholar]

23. Kuszak JR, Zoltoski RK, Sivertson C. Fibre cell organization in crystalline lenses. Exp Eye Res. 2004;78(3):673–687. [PubMed] [Google Scholar]

24. Benedek GB. Theory of transparency of the eye. Appl Opt. 1971;10:459–473. [PubMed] [Google Scholar]

25. Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302:415–417. [PubMed] [Google Scholar]

26. Rafferty NS. Lens morphology. In: Maisel H, editor. The Ocular Lens. New York: Marcel Dekker Inc.; 1985. pp. 1–60. [Google Scholar]

27. Ireland M, Maisel H. A family of lens fiber cell specific proteins. Lens Eye Toxic Res. 1989;6:623–638. [PubMed] [Google Scholar]

28. Michael R, van Marle J, Vrensen GF, van den Berg TJ. Changes in the refractive index of lens fibre membranes during maturation—impact on lens transparency. Exp Eye Res. 2003;77(1):93–99. [PubMed] [Google Scholar]

29. Piatigorsky J. Gene expression and genetic engineering in the lens. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1987;28:9–28. [PubMed] [Google Scholar]

30. Hejtmancik JF, Beebe DC, Ostrer H, Piatigorsky J. delta- and beta-Crystallin mRNA levels in the embryonic and posthatched chicken lens: temporal and spatial changes during development. Dev Biol. 1985;109:72–81. [PubMed] [Google Scholar]

31. van Leen RW, van Roozendaal KEP, Lubsen NH, Schoenmakers JG. Differential expression of crystallin genes during development of the rat eye lens. Dev Biol. 1987;120:457–464. [PubMed] [Google Scholar]

32. Aarts HJ, Lubsen NH, Schoenmakers JG. Crystallin gene expression during rat lens development. Eur J Biochem. 1989;183:31–36. [PubMed] [Google Scholar]

33. Lerman S. Radiant Energy and the Eye. New York: MacMillan; 1980. [Google Scholar]

34. Korlimbinis A, Truscott RJ. Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract. Biochemistry. 2006;45(6):1950–1960. [PubMed] [Google Scholar]

35. Bettelheim FA, Siew EL. Effect of changes in concentration upon lens turbidity as predicted by the random fluctuation theory. Biophys J. 1983;41:29–33. [PMC free article] [PubMed] [Google Scholar]

36. Delaye M, Gromiec A. Mutual diffusion of crystallin proteins at finite concentrations: a light scattering study. Biopolymers. 1983;22:1203–1221. [PubMed] [Google Scholar]

37. Takemoto L, Sorensen CM. Protein-protein interactions and lens transparency. Exp Eye Res. 2008;87(6):496–501. [PMC free article] [PubMed] [Google Scholar]

38. Stradner A, Foffi G, Dorsaz N, Thurston G, Schurtenberger P. New insight into cataract formation: enhanced stability through mutual attraction. Phys Rev Lett. 2007;99(19):198103. [PubMed] [Google Scholar]

39. Uhlhorn SR, Borja D, Manns F, Parel JM. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vision Res. 2008;48(27):2732–2738. [PMC free article] [PubMed] [Google Scholar]

40. Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One. 2008;3(1):e1529. [PMC free article] [PubMed] [Google Scholar]

41. Sample PA, Esterson FD, Weinreb RN, Boynton RM. The aging lens: in vivo assessment of light absorption in 84 human eyes. Invest Ophthalmol Vis Sci. 1988;8:1306–1311. [PubMed] [Google Scholar]

42. Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ. The ageing lens. Ophthalmologica. 2000;214(1):86–104. [PubMed] [Google Scholar]

43. Vrensen G, Kappelhof J, Willikens B. Aging of the human lens. Lens Eye Toxic Res. 1990;7:1–30. [PubMed] [Google Scholar]

44. Kuszak JR, Deutsch TA, Brown HG. Anatomy of aged and senile cataractous lenses. In: Albert D, Jacobiec F, editors. Principles and Practice of Ophthalmology: Basic Sciences. Philadelphia: W.B. Saunders; 1994. pp. 82–97. [Google Scholar]

45. Koretz JF, Kaufman PL, Neider MW, Goeckner PA. Accommodation and presbyopia in the human eye—aging of the anterior segment. Vision Res. 1989;29:1685–1692. [PubMed] [Google Scholar]

46. Davson H. Physiology of the Eye. New York: Pergamon Press; 1990. [Google Scholar]

47. Hockwin O, Ohrloff C. The eye in the elderly: lens. In: Platt D, editor. Geriatrics. Berlin: Springer-Verlag; 1984. pp. 373–424. [Google Scholar]

48. Truscott RJ. Age-related nuclear cataract: oxidation is the key. Exp Eye Res. 2005;80(5):709–725. [PubMed] [Google Scholar]

49. Gao J, Wang H, Sun X, et al. The effects of age on lens transport. Invest Ophthalmol Vis Sci. 2013;54(12):7174–7187. [PMC free article] [PubMed] [Google Scholar]

50. Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Curr Eye Res. 2006;31(1):1–11. [PubMed] [Google Scholar]

51. Wei M, Xing KY, Fan YC, Libondi T, Lou MF. Loss of thiol repair systems in human cataractous lenses. Invest Ophthalmol Vis Sci. 2015;56(1):598–605. [PMC free article] [PubMed] [Google Scholar]

52. Duncan G, Hightower KR, Gandolfi SA, Tomlinson J, Maraini G. Human lens membrane cation permeability increases with age. Invest Ophthalmol Vis Sci. 1989;30(8):1855–1859. [PubMed] [Google Scholar]

53. Lampi KJ, Ma Z, Hanson SR, et al. Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp Eye Res. 1998;67(1):31–43. [PubMed] [Google Scholar]

54. Datiles MB, III, Ansari RR, Suh KI, et al. Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch Ophthalmol. 2008;126(12):1687–1693. [PMC free article] [PubMed] [Google Scholar]

55. Roy D, Spector A. Absence of low-molecular weight alpha-crystallin in nuclear region of old human lens. Proc Natl Acad Sci USA. 1976;73:3484–3487. [PMC free article] [PubMed] [Google Scholar]

56. McFall-Ngai MJ, Ding LL, Takemoto LJ, Horwitz J. Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp Eye Res. 1985;41:745–758. [PubMed] [Google Scholar]

57. Voorter CE, De Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, de Jong WW. The in vivo phosphorylation sites of bovine alpha B-crystallin. FEBS Lett. 1989;259:50–52. [PubMed] [Google Scholar]

58. Rao G, Santhoshkumar P, Sharma KK. Anti-chaperone betaA3/A1(102–117) peptide interacting sites in human alphaB-crystallin. Mol Vis. 2008;14:666–674. [PMC free article] [PubMed] [Google Scholar]

59. Harding JJ, Crabbe MJC. In: The lens: development, proteins, metabolism and cataract. 3. Davson H, editor. Orlando: Academic Press; 1984. pp. 207–492. The Eye; vol IB. [Google Scholar]

60. Straatsma BR, Horwitz J, Takemoto LJ, Lightfoot DO, Ding LL. Clinicobiochemical correlations in aging-related human cataract. Am J Ophthalmol. 1984;97:457–469. [PubMed] [Google Scholar]

61. David LL, Shearer TR. Role of proteolysis in lenses: a review. Lens Eye Toxic Res. 1989;6:725–747. [PubMed] [Google Scholar]

62. Horwitz J, Wong MM. Peptide mapping by limited proteolysis in sodium dodecyl sulfate of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes. Biochim Biophys Acta. 1980;622:134–143. [PubMed] [Google Scholar]

63. Ball LE, Garland DL, Crouch RK, Schey KL. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence. Biochemistry. 2004;43(30):9856–9865. [PubMed] [Google Scholar]

64. Swamy-Mruthinti S. Glycation decreases calmodulin binding to lens transmembrane protein, MIP. Biochim Biophys Acta. 2001;1536(1):64–72. [PubMed] [Google Scholar]

65. Wagner BJ, Margolis JW, Garland D, Roseman JE. Bovine lens neutral proteinase preferentially hydrolyses oxidatively modified glutamine synthetase. Exp Eye Res. 1986;43:1141–1143. [PubMed] [Google Scholar]

66. Jahngen JH, Lipman RD, Eisenhauer DA, Jahngen EG, Jr, Taylor A. Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates. Arch Biochem Biophys. 1990;276:32–37. [PubMed] [Google Scholar]

67. Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem. 1997;272(37):23086–23093. [PubMed] [Google Scholar]

68. Masters PM, Bada JL, Zigler JS., Jr Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature. 1977;268:71–73. [PubMed] [Google Scholar]

69. Hanson SR, Hasan A, Smith DL, Smith JB. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res. 2000;71(2):195–207. [PubMed] [Google Scholar]

70. Takata T, Oxford JT, Demeler B, Lampi KJ. Deamidation destabilizes and triggers aggregation of a lens protein, betaA3-crystallin. Protein Sci. 2008;17(9):1565–1575. [PMC free article] [PubMed] [Google Scholar]

71. Flaugh SL, Mills IA, King J. Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding. J Biol Chem. 2006;281(41):30782–30793. [PubMed] [Google Scholar]

72. Groenen PJ, van den Ijssel PR, Voorter CE, Bloemendal H, de Jong WW. Site-specific racemization in aging alpha A-crystallin. FEBS Lett. 1990;269:109–112. [PubMed] [Google Scholar]

73. Nakamura T, Sakai M, Sadakane Y, et al. Differential rate constants of racemization of aspartyl and asparaginyl residues in human alpha A-crystallin mutants. Biochim Biophys Acta. 2008;1784(9):1192–1199. [PubMed] [Google Scholar]

74. Spector A, Chiesa R, Sredy J, Garner W. cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci USA. 1985;82:4712–4716. [PMC free article] [PubMed] [Google Scholar]

75. Garlick RL, Mazer JS, Chylack LT, Jr, Tung WH, Bunn HF. Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus. J Clin Investig. 1984;74:1742–1749. [PMC free article] [PubMed] [Google Scholar]

76. Augusteyn RC. Distribution of fluorescence in the human cataractous lens. Ophthalmic Res. 1975;7:217–224. [Google Scholar]

77. Kumar PA, Kumar MS, Reddy GB. Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J. 2007;408(2):251–258. [PMC free article] [PubMed] [Google Scholar]

78. Harding JJ. Possible causes of the unfolding of proteins in cataract and a new hypothesis to explain the high prevalence of cataract in some countries. In: Regnault F, Hockwin O, Courtois Y, editors. Aging of the Lens. Amsterdam: Elsevier; 1980. pp. 71–80. [Google Scholar]

79. Harding JJ, Rixon KC. Carbamylation of lens proteins: a possible factor in cataractogenesis in some tropical countries. Exp Eye Res. 1980;31:567–571. [PubMed] [Google Scholar]

As an enthusiast deeply entrenched in the intricate realm of ophthalmology and the fascinating world of lens physiology, I'm poised to dissect the wealth of information embedded in the article you've provided, spanning the historical perspectives to the modern intricacies. This article, a mosaic of scientific endeavors, is a testament to the progression of our understanding of the crystalline lens.

  1. Brewster D. (1833): This early work delves into the anatomical and optical structure of the crystalline lens in animals, with a particular focus on the cod. Brewster lays the foundation for subsequent explorations into the lens's structural intricacies.

  2. Morner CT. (1894): Morner explores the protein substances in the light-refracting media of the eye, contributing to the understanding of the molecular components within the lens.

  3. Spemann H. (1901): Spemann's work on correlations in the development of the eye provides insights into the intricate processes shaping the lens during embryonic development.

  4. Renwick JH, Lawler SD. (1963): This work suggests a probable linkage between a congenital cataract locus and the Duffy blood group locus, hinting at genetic connections in lens health.

  5. Zelenka PS, Piatigorsky J. (1974): Isolation and in vitro translation of delta-crystallin mRNA from embryonic chick lens fibers contribute to our understanding of gene expression in lens development.

  6. Harding JJ, Rixon KC, Marriott FHC. (1977): Investigating the weight differences in lenses between genders sets the stage for discussions on gender-related variations in lens characteristics.

  7. Augusteyn RC. (2007): Augusteyn's exploration of the growth of the human eye lens provides contemporary insights into the dynamic nature of lens development.

  8. Wistow GJ, Piatigorsky J. (1988): This work explores the evolution and expression of lens crystallins, shedding light on the specialized proteins crucial for lens function.

  9. Kuszak JR. (1990): Kuszak's exploration of the embryology and anatomy of the lens provides a comprehensive overview of the lens's developmental stages.

  10. Danysh BP, Duncan MK. (2009): This article on the lens capsule expands our knowledge of the structural components surrounding the lens.

The subsequent sections delve into various aspects, including lens fiber organization, molecular organization of the lens capsule, and the fibrillin microfibrillar system in Marfan syndrome. Contributions from various researchers like Harding, Piatigorsky, and Kuszak underscore the collaborative nature of scientific exploration.

Exploring lens metabolism, transport, and permeability, as well as the role of cytoskeletal and contractile structures, takes us deep into the molecular machinery driving lens function.

The latter parts of the article touch upon lens transparency theories, the effects of aging on the lens, and the impact of various factors such as oxidation, glycation, and phosphorylation. Notable findings include the identification of proteins like alpha-crystallin and their modifications, providing a nuanced understanding of lens changes associated with age and disease.

In conclusion, this comprehensive article weaves a narrative that spans centuries, offering a holistic view of the crystalline lens, from its historical exploration to the contemporary molecular intricacies that define our understanding of vision and ocular health.

Overview of the Lens (2024)
Top Articles
Latest Posts
Article information

Author: Greg O'Connell

Last Updated:

Views: 5680

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Greg O'Connell

Birthday: 1992-01-10

Address: Suite 517 2436 Jefferey Pass, Shanitaside, UT 27519

Phone: +2614651609714

Job: Education Developer

Hobby: Cooking, Gambling, Pottery, Shooting, Baseball, Singing, Snowboarding

Introduction: My name is Greg O'Connell, I am a delightful, colorful, talented, kind, lively, modern, tender person who loves writing and wants to share my knowledge and understanding with you.