Lens | Meaning, Principles, Manufacture, & Facts (2024)

images formed by convex and concave lenses

Category:

Key People:
Giuseppe Campani
John Henry Dallmeyer
Alvan Graham Clark
Related Topics:
speed
Fresnel lens
aperture
relay lens
achromatic lens

See all related content →

lens, in optics, piece of glass or other transparent substance that is used to form an image of an object by focusing rays of light from the object. A lens is a piece of transparent material, usually circular in shape, with two polished surfaces, either or both of which is curved and may be either convex (bulging) or concave (depressed). The curves are almost always spherical; i.e., the radius of curvature is constant. A lens has the valuable property of forming images of objects situated in front of it. Single lenses are used in eyeglasses, contact lenses, pocket magnifiers, projection condensers, signal lights, viewfinders, and on simple box cameras. More often a number of lenses made of different materials are combined together as a compound lens in a tube to permit the correction of aberrations. Compound lenses are used in such instruments as cameras, microscopes, and telescopes.

Optical principles for lenses

A lens produces its focusing effect because light travels more slowly in the lens than in the surrounding air, so that refraction, an abrupt bending, of a light beam occurs both where the beam enters the lens and where it emerges from the lens into the air.

A single lens has two precisely regular opposite surfaces; either both surfaces are curved or one is curved and one is plane. Lenses may be classified according to their two surfaces as biconvex, plano-convex, concavo-convex (converging meniscus), biconcave, plano-concave, and convexo-concave (diverging meniscus). Because of the curvature of the lens surfaces, different rays of an incident light beam are refracted through different angles, so that an entire beam of parallel rays can be caused to converge on, or to appear to diverge from, a single point. This point is called the focal point, or principal focus, of the lens (often depicted in ray diagrams as F). Refraction of the rays of light reflected from or emitted by an object causes the rays to form a visual image of the object. This image may be either real—photographable or visible on a screen—or virtual—visible only upon looking into the lens, as in a microscope. The image may be much larger or smaller than the object, depending on the focal length of the lens and on the distance between the lens and the object. The focal length of a lens is the distance from the centre of the lens to the point at which the image of a distant object is formed. A long-focus lens forms a larger image of a distant object, while a short-focus lens forms a small image.

Usually the image formed by a single lens is not good enough for precise work in such fields as astronomy, microscopy, and photography; this is because the cone of rays emitted by a single point in a distant object is not united in a perfect point by the lens but instead forms a small patch of light. This and other innate imperfections in a lens’s image of a single object point are known as aberrations. To correct such aberrations, it is often necessary to combine in one mount several lens elements (single lenses), some of which may be convex and some concave, some made of dense high-refractive or high-dispersive glass, and others made of low-refractive or low-dispersive glass. The lens elements may be cemented together or mounted at carefully calculated separations to correct the aberrations of the individual elements and obtain an image of acceptable sharpness (see also aberration). The precise mounting also ensures that all lenses are properly centred; that is, the centres of curvature of all the lens surfaces lie on a single straight line called the principal axis of the lens. A frequently used measure of the quality of any lens system is its ability to form an image that is sharp enough to separate, or resolve, two very close dots or lines in an object. Resolving power depends on how well the various aberrations in a lens system are corrected.

The simplest compound lens is a thin cemented combination of two single lenses, such as that used in the objective (the lens nearest the object) of a small refracting telescope. Microscope objectives may contain as many as eight or nine elements, some of which may be made of different materials in order to bring all colours of light to a common focus, and thus prevent chromatic aberration. The objective lenses used in cameras may contain from two to 10 elements, while a so-called zoom or variable-focal length lens may have as many as 18 or 20 elements in several groups, the different groups being movable along the axis by levers or cams in order to produce the desired change in focal length without a shift of the focal plane. Lenses also vary greatly in diameter, from as small as 0.16 cm (1/16 inch) for an element in a microscope objective to as large as 100 cm (40 inches) for an astronomical telescope objective. In reflectors and several other types of astronomical telescopes, concave mirrors are used for the objective instead of lenses.

I'm an optics enthusiast with a deep understanding of lenses and their applications, supported by a wealth of knowledge in the field. To establish my expertise, let's delve into the concepts related to convex and concave lenses, drawing upon the information provided in the article.

Lens Basics: A lens, in optics, is a transparent piece of glass or other material used to form an image of an object by focusing rays of light. It typically has two polished surfaces, which can be curved and either convex (bulging outward) or concave (depressed inward).

Optical Principles: A key property of lenses is their ability to produce images through refraction, where light travels more slowly in the lens than in the surrounding air. This results in the bending of light rays as they enter and exit the lens. Lenses can be classified based on their surfaces as biconvex, plano-convex, concavo-convex, biconcave, plano-concave, and convexo-concave.

Focal Points and Image Formation: The point at which an entire beam of parallel rays converges or appears to diverge is called the focal point (depicted as F in ray diagrams). The image formed by the lens can be real (photographable or visible on a screen) or virtual (visible only upon looking into the lens, as in a microscope). The size of the image depends on the focal length of the lens and the distance between the lens and the object.

Aberrations and Correction: Single lenses may exhibit imperfections known as aberrations, necessitating the use of compound lenses in instruments like cameras, microscopes, and telescopes. The quality of a lens system is often measured by its resolving power—the ability to form a sharp image, crucial for precise work. Aberrations can be corrected by combining convex and concave lens elements made of different materials.

Lens Systems: Compound lenses may involve thin cemented combinations of two single lenses or more complex configurations with numerous elements. Microscope objectives and camera lenses, for instance, may contain multiple elements to correct aberrations and enhance image quality. The diameter of lenses can vary significantly, from microscopic elements to large astronomical telescope objectives.

In summary, lenses play a crucial role in optics, forming images through the refraction of light. Understanding the principles of convex and concave lenses, their focal points, and the correction of aberrations is essential for various optical applications, from eyeglasses to sophisticated telescopes.

Lens | Meaning, Principles, Manufacture, & Facts (2024)
Top Articles
Latest Posts
Article information

Author: Aracelis Kilback

Last Updated:

Views: 5873

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Aracelis Kilback

Birthday: 1994-11-22

Address: Apt. 895 30151 Green Plain, Lake Mariela, RI 98141

Phone: +5992291857476

Job: Legal Officer

Hobby: LARPing, role-playing games, Slacklining, Reading, Inline skating, Brazilian jiu-jitsu, Dance

Introduction: My name is Aracelis Kilback, I am a nice, gentle, agreeable, joyous, attractive, combative, gifted person who loves writing and wants to share my knowledge and understanding with you.